Epidemiology, Biostatistics and Prevention Institute

Analysis of dietary patterns in the Swiss population – the menuCH study

Giulia Pestoni Jean-Philippe Krieger

30/08/17 Page 1

Published menu CH data (03/2017)

This is for the average Swiss.

To find patterns, we need to look at the raw data.

MenuCH: what are the available data?

Data structure of MenuCH

Contains minimal info about the participants (sex, age, language region)

Dietary behavior & physical activity questionnaire

A lot of data about usual diet, cooking, food intolerance/allergies, physical activity, morphology, income, ...

Data Federal Statistical Office

Demographic data used to establish the sample. Has more detailed data on certain variables (ie canton instead of language region, etc)

Data structure of MenuCH (2x 24HR)

	Indiv ID	Interview # (2x 24h)	IsRecip e?	Food / Recipe name	Food / Recipe Categor y	Amount (g)	Cat 	Day	Place
	1	1st	No	Tomatoes	Vegetabl es	102			
1st 24 HR	1	1st	No	Vinegar	Sauce and spices	14			
	1	1st	Yes	Pizza w. ham & cheese	Based on dough	250			
2nd 24 HR	1	2nd	No	 Description	 n of each t	 food item			nfo about
	1	2nd	No -	Description of each food item Food name Food category / subcat / subsubcat Energy and nutrient values				the recall Day of the week Type of day Time, place,	of the week be of day
_	•								

Structuring data for dietary pattern analysis

	In	terview 1		Interview 2				
Ind ID								
1	FOOD CATEGORIES	FOOD SUBCAT	NUTRIENT VALUES	FOOD CATEGORIES	FOOD SUBCAT	NUTRIENT VALUES		
2	Sum _{day} (Intake)	Sum _{day} (Inta ke)	Sum _{day} (Ene rgy or	Sum _{day} (Intake)	Sum _{day} (Inta ke)	Sum _{day} (Ene rgy or		
3		,	Intake)			Intake)		
	<u>MAIN</u>	<u>SUPP</u>	<u>SUPP</u>	<u>MAIN</u>	<u>SUPP</u>	<u>SUPP</u>		

Structuring data for dietary pattern analysis

Dietary patterns: a priori vs. a posteriori

- A priori (hypothesis-driven)
 - Mediterranean Diet Score
 - Healthy Eating Index
 - ...
- A posteriori (data-driven)
 - Principal component methods
 - Clustering

- ...

Diet quality scores

- Mediterranean Diet Score (MDS)
 - "Original" Mediterranean Diet Score
 - "Swiss" Mediterranean Diet Score
- Healthy Eating Index (HEI)
 - HEI 1995
 - HEI 2010

"Original " Mediterranean Diet Score

Component	Range of score	Criteria for maximum score of 1 ^a	Criteri for minimum score of 0 ^a
Vegetables	0-1	Above the median	Below the median
Legumes	0-1	Above the median	Below the median
Fruits and nuts	0-1	Above the median	Below the median
Cereal	0-1	Above the median	Below the median
Fish	0-1	Above the median	Below the median
Meat	0-1	Below the median	Above the median
Dairy products	0-1	Below the median	Above the median
Alcohol	0-1	5 - 25 g/day for women	< 5 or > 25 g/day for women
		10 - 50 g/day for men	< 10 or > 50 g/day for men
Fat intake	0-1	Above the median	Below the median

^aMedian are sex-specific

Reference: Trichopoulou et al. 2003

"Swiss" Mediterranean Diet Score

Component	Range of score	Criteria for maximum score of 1 ^a	Criteri for minimum score of 0 ^a
Vegetables	0-1	Above the median	Below the median
Legumes	0-1	Above the median	Below the median
Fruits and nuts	0-1	Above the median	Below the median
Cereal	0-1	Above the median	Below the median
Fish	0-1	Above the median	Below the median
Meat	0-1	Below the median	Above the median
Dairy products	0-1	Above the median	Below the median
Alcohol	0-1	5 - 25 g/day for women	< 5 or > 25 g/day for women
		10 - 50 g/day for men	< 10 or > 50 g/day for men
Fat intake	0-1	Above the median	Below the median

^aMedian are sex-specific

Reference: Vormund et al. 2015

Results "Original " Mediterranean Diet Score

Results "Swiss" Mediterranean Diet Score

Healthy Eating Index 1995

Component Range of score		Criteria for perfect score of 10 ^a	Criteria for minimum score of 0				
Food group	ood group						
1. Grains	0 to 10	6-11 servings ^b	0 servings				
Vegetables	0 to 10	3-5 servings ^b	0 servings				
3. Fruits	0 to 10	2-4 servings ^b	0 servings				
4. Milk	0 to 10	2 to 3 servings ^{bc}	0 servings				
5. Meat	0 to 10	2 to 3 servings ^b	0 servings				
Dietary guidelines							
Total fat	0 to 10	30% or less energy from fat	45% or greater energy from fat				
Saturated fat	0 to 10	Less than 10% energy from saturated fat	15% or greater energy from saturated fat				
Cholesterol	0 to 10	Less than 300 mg	Greater than or equal to 450 mg				
9. Sodium	0 to 10	Less than 2,400 mg	Greater than or equal to 4,800 mg				
10. Variety	0 to 10	16 different kinds of food items over 3-day period	6 or fewer food items over a 3-day period				

	Servings					
Kilocalories	Grains	Vegetables	Fruits	Milka	Meat	
1,600	6	3	2	2	2	
2,200	9	4	3	2	2.4	
2,800	11	5	4	2	2.8	

Reference: Kennedy et al. 1995

Healthy Eating Index 2010

score of
oles or
oteins
≤1.2
r 1,000
<

Reference: Guenther et al. 2013

Recommendations SGE

Getränke

Täglich 1–2 Liter, bevorzugt in Form von ungesüssten Getränken, z. B. Hahnen-/Mineralwasser oder Früchte-/Kräutertee. Koffeinhaltige Getränke wie Kaffee, schwarzer und grüner Tee können zur Flüssigkeitszufuhr beitragen.

Gemüse & Früchte

Täglich 5 Portionen in verschiedenen Farben, davon 3 Portionen Gemüse und 2 Portionen Früchte. 1 Portion entspricht 120 g. Pro Tag kann eine Portion durch 2 dl Gemüse-/Fruchtsaft (ohne Zuckerzusatz) ersetzt werden.

Getreideprodukte, Kartoffeln & Hülsenfrüchte

Täglich 3 Portionen. Bei Getreideprodukten Vollkorn bevorzugen. 1 Portion entspricht: ▶ 75-125 g Brot/Teig oder ▶ 60-100 g Hülsenfrüchte (Trockengewicht) oder ▶ 180-300 g Kartoffeln oder ▶ 45-75 g Knäckebrot/ Vollkornkräcker/Flocken/Mehl/Teigwaren/Reis/Mais/ andere Getreidekörner (Trockengewicht).

Milchprodukte, Fleisch, Fisch, Eier & Tofu

Täglich 3 Portionen Milch/Milchprodukte. 1 Portion entspricht: ▶ 2 dl Milch oder ▶ 150 – 200 g Joghurt/ Quark/Hüttenkäse/andere Milchprodukte oder ▶ 30 g Halbhart-/Hartkäse oder ▶ 60 g Weichkäse.

Täglich zusätzlich 1 Portion eines weiteren proteinreichen Lebensmittels (z. B. Fleisch, Geflügel, Fisch, Eier, Tofu, Quorn, Seitan, Käse, Quark). Zwischen diesen Proteinquellen abwechseln. 1 Portion entspricht:

▶ 100-120 g Fleisch/Geflügel/Fisch/Tofu/Seitan/Quorn (Frischgewicht) oder ▶ 2-3 Eier oder ▶ 30 g Halbhart-/ Hartkäse oder ▶ 60 g Weichkäse oder ▶ 150-200 g Quark/Hüttenkäse.

Öle, Fette & Nüsse

Täglich 2–3 Esslöffel (20–30 g) Pflanzenöl, davon mindestens die Hälfte in Form von Rapsöl.

Täglich 1 Portion (20 – 30 g) ungesalzene Nüsse, Samen oder Kerne. Zusätzlich können **sparsam** Butter, Margarine, Rahm etc. verwendet werden (ca. 1 EL = 10 g pro Tag).

Süsses, Salziges & Alkoholisches

Süssigkeiten, gesüsste Getränke, salzige Knabbereien und alkoholhaltige Getränke **mit Mass** geniessen.

Total Fat

 \leq 30% = 10 points \geq 45% = 0 points

Dietary patterns: a priori vs. a posteriori

- A priori (hypothesis-driven)
 - Mediterranean Diet Score
 - Healthy Eating Index
 - ...
- A posteriori (data-driven)
 - Principal component methods
 - Clustering

- ...

Methods: Multiple Factorial Analysis as a method of choice to handle the 2x24HR

Problem with lots of quantitative food data

For 1 24HR:

Case 1: only 2 groups.

John (100,200)Helen (150,100)

Case 2: 18 food groups!

● John (100,200,25,....,10,24)

Helen (150,100,42,....,11,32)

No graph possible but each point as a unique position in a 18th-dimensional space

Can we summarize this highly dimensional point cloud into a lower dimensional space, so that we can graph and interprete the data?

Finding principal components: example 3D>2D

Limits of PCA for our problem

BUT!!! PCA has some limitations!

Here, data is structured in 2 x 24HR, ie, in 2 groups of identical variables that refer to the 2 different interviews.

Limits of PCA for our problem

SOLUTIONS?

- X Average the values of 1 ind over the 2 24HR?
 - We lose the internal structure of each 24HR.
- Do a PCA for each observation (1 24HR/1 ind)?

 We lose the info that 2 24HR are from the same person.
- ✗ Code the food groups as Fruits_int1 and Fruits_int2?
 We lose the internal structure of each 24HR.
- A. Run PCA on interview 1 and interview 2, "average" the principal components, and plot ind in the new dimensions.

=> MULTIPLE FACTORIAL ANALYSIS

Multiple Factorial Analysis: intuition

Multiple Factorial Analysis: new dimensions!

Multiple Factorial Analysis: new dimensions!

The new principal components show the best representation possible of the two interviews taken together.

Multiple Factorial Analysis: intuition

Multiple Factorial Analysis: representing individuals

Each individual is in the middle of the positions that he would have if only one of the two PCA was taken into account.

Multiple Factorial Analysis: other advantages

Multiple Factorial Analysis: summary

- MFA is applied on food categories in the MenuCH data.
- 2 groups of variables are considered:
 - Food categories related to the 1st interview
 - ➤ Food categories related to the 2nd interview
- MFA allows to visualize "habitual" dietary patterns…
- ...but also indicates discrepancies between the 2 interviews for each individual ...
- > ...and also indicates whether the 2 interviews are showing similar things
- ➤ Like for other principal component methods, other variables can be used as supplementary variables: subcategories, nutrients, demographics, morphology, data from the dietary and physical activity questionnaire...

Preliminary results: Dietary patterns in the Swiss population

Q1: Do interviews 1 and 2 similarly represent people's nutrition (globally)?

MFA similarly represents the components of interviews 1 and 2

MFA similarly represents the components of interviews 1 and 2

Data from interviews 1 and 2 show a high degree of agreement

Q2: Individually, do people eat similarly between the 2 interviews?

Most of the individuals have a moderate discordance between the 2 recalls...

... But certain individuals have a high discordance between the 2 recalls

Q3: How many and which dietary patterns can we see?

Clustering results

Hierarchical clustering

Number of participants / cluster

Cluster characterization

- 1 Monotonous, soft drinks, cakes, redprocessed meat, low fiber
- 2 Monotonous, alcohol, red-processed meat, low fiber, some convenience food
- 3 High milk and dairy, convenience food and snacks
- 4 High energy-dense foods (starchy, chocolate, added fats)
- Fruits and vegetables, eggs, low energyenergy foods, some added fats (cooking?)

ALL

Nederaple sond kniget wire List is stated with the control of the state of the choice of the control of the con

Cluster characterization

Cluster characterization > NUTRIENTS

- Monotonous, soft drinks, cakes, redprocessed meat, low fiber
- 2 Monotonous, alcohol, red-processed meat, low fiber, some convenience food
- Average with high milk and dairy, and some convenience food
- 4 Average with high energy foods (starchy, chocolate, added fats)
- Fruits and vegetables, eggs, low highenergy foods, some added fats (cooking?)

ALL

Cluster characterization > SUBCATEGORIES

- 1 Monotonous, soft drinks, cakes, redprocessed meat, low fiber
- 2 Monotonous, alcohol, red-processed meat, low fiber, some convenience food
- Average with high milk and dairy, and some convenience food
- Average with high energy foods (starchy, chocolate, added fats)
- Fruits and vegetables, eggs, low highenergy foods, some added fats (cooking?)

ALL

Summary

- To analyze the MenuCH nutrition data, we need to go beyond PCA.
- For this, we used Multiple Factorial Analysis, followed by clusterization.
- We identified 5 dietary patterns (2 monotonous, 2 average, 1 healthy).
- These dietary patterns also strongly cluster with nutrient intakes.

To go further

- Characterize the participants (demographics, lifestyle, ...) by dietary patterns
- Geographic repartition of the dietary patterns

The 5 dietary patterns by sex

The 5 dietary patterns by age group

The 5 dietary patterns by language region

The 5 dietary patterns by canton

