Epidemiology, Biostatistics and Prevention Institute

Analysis of dietary patterns in the Swiss population

NFP1A and MONICA studies

Jean-Philippe Krieger

30/08/17 Page 1

Classic approaches vs. Dietary patterns

Classic approaches:

- Single food
- Single food groups
- Single nutrients

Dietary patterns:

- A priori (hypothesis-driven): Mediterranean Index, Healthy Eating Index, ...
- A posteriori (data-driven): Principal component methods, Clustering, ...

Published menu CH data (03/2017)

Very nice... but these are mostly averages... Every Swiss does not eat like an average Swiss!

Principle: how to identify a posteriori dietary patterns?

How to find dietary patterns?

DEFINITION

Identifying dietary patterns = finding individuals that have a similar profile of answers to a nutrition questionnaire

METHODS

1/ Summarize the variability in a lower dimensional space

2/ Use these new dimensions to cluster individuals

Survey data are highly multidimensional

Each individual has answered no=0 or yes=1 to nutrition questions.

Case 1: only 2 questions.

- John (0,1)
- Helen (1,1)

Case 2: 3 questions.

- John (0,1,1)
- Helen (1,1,0)

Case 3: 12 questions.

John (0,1,1,....,1,0)Helen (1,1,0,....,0,0)

Can we summarize this highly dimensional point cloud into a lower dimensional space, so that we can graph and interprete the data?

Finding principal components: example 3D>2D

Finding principal components: example 3D>2D

Finding principal components: example 3D>2D

How to find dietary patterns?

DEFINITION

Identifying dietary patterns = finding individuals that have a similar profile of answers to the 12 food questions

METHODS

1/ Summarize the variability in a lower dimensional space

Hierarchical clustering on principal components

Example: dietary patterns in the Swiss population (1977-1993)

Identification of a posteriori dietary patterns: an example

Data set: 4 studies (monitoring of trends and determinants of cardiovascular diseases)

NUTRITION: 24h recall 12 food items (y/n)

Fish / meat / sausage / vegetables / salad / fruit / chocolate / bread_dark / eggs / cheese / milk / yogurt

SUPPLEMENTARY: Demographics and lifestyle factors

Age / sex / education / BMI / Sport / Smoking /

Results 1/ Multiple Correspondence Analysis

Individuals
Axes 1-2

Categories
Axes 1-2

Results 2/ HCPC

Results 2/ HCPC - % of food consumption by cluster

Results 2/ HCPC - An example of supplementary variable

Results 2/ HCPC – association between diet, demographics and behavior

Epidemiology, Biostatistics and Prevention Institute

- MCA allows to summarize the variability in the available dataset (12 food items from a 24h recall among 18,000 ind).
- HCPC allowed to identify 5 clear dietary patterns on the basis of the 4 first principal components of the MCA.
- Supplementary variables allowed to find the other demographic or lifestyle factors that characterize the 5 dietary patterns.
- This approach is currently applied to the MenuCH data.